E85 and Flex-Fuel Technology

By
Blaine M. Heisner
SIUC Department of Automotive Technology
bheisner@siu.edu
What is an Alternative Fuel?

- As defined by Energy Policy Act of 1992 (EPAct)
 - Substantially non-petroleum
 - Substantial energy security benefits
 - Substantial environmental benefits
- Methanol/ethanol/alcohol blends (85%)
- Natural gas/Propane
- Coal derived liquid fuels
- Hydrogen
- Electricity
- Biodiesel
- Biological source fuels
- P-series fuels
Why do we need them?

- Reduce our nation’s dependence on imported petroleum
- Reduce exhaust emissions and environmental pollutants
- Controlling costs in certain applications
- Expand fuel technology to find the perfect fuel
Ethanol

- Ethyl alcohol, grain alcohol
- Liquid product produced from the fermentation of plant sugars/starches
- Can be produced from almost any organic feedstock
- Flammable/colorless/strong odor
Ethanol Properties

- Heavier than gasoline
- Less dense than water
- Mixes with water
- Has less heat energy than gasoline
- Less volatile than gasoline
- Corrosive
Ethanol Production

- **Glucose**
 - Expensive due to food value
 - Sugar rich = sugar beets/sugar cane
 - Starches = corn/potatoes

- **Cellulose**
 - Cheap feedstock due to no/little food value
 - Extract cellulose from plant material
 - Convert cellulose to glucose
 - Acids or enzymes
 - More expensive due to extra processes

- **Energy returned on energy invested**
 - Corn = 1.34/1
 - Sugar Cane = 8/1
Ethanol in Fuel

- Largest use is in fuels
- Must be void of water (anhydrous)
- High octane
- Lower emissions
 - 40% less CO
 - 10% less NOx
 - 20% less PM
 - No net CO2
- Mixture of 85% ethanol/15% gasoline
- Designed for Flex-Fuel vehicles
- 105 octane rating
- Well suited for racing applications
- Possible cold-start concerns
one gallon: A COMPARISON

REGULAR OLE OIL-BASED GAS: 124,800 BTU

CORN OIL (E85): 80,000 BTU

1.56 gallons of E85 takes you as far as 1 gallon of gas
Other Ethanol Blends

- **E10**
 - 10% ethanol/90% gasoline
 - Very common in US
 - 1990-newer vehicles are compatible
- **E70**=winter blend E85
- **E95**=Diesel engines
Ethanol Argument

- **Benefits**
 - Domestically produced
 - Renewable
 - Biodegradable
 - Lower emissions

- **Detriments**
 - Less heat energy
 - More expensive to produce
 - Limited availability
Flex-Fuel Technology
Flex-Fuel Technology Basics

- What does “Flex-Fuel” mean?
- Are Flex-Fuel vehicles available?
- How flexible are FF vehicles?
- What is different about FF vehicles?
Flex-Fuel Vehicle Modifications

- anti-corrosion protection
- increase fuel system capacity
- fuel conductivity consideration
- verify alcohol percentage
Anti-Corrosion Protection

- alcohol’s corrosive nature
 - methanol worse than ethanol
- aluminum & magnesium lines/tanks
 - stainless steel not affected
- deteriorates rubber components
 - use of Teflon seals, o-rings, etc…
- formic acid production
 - nitride coatings/FFV oils
Fuel System Capacity

- Alcohol’s lower heat energy per unit
- Larger fuel tank capacity
 - Sender modifications
- Larger fuel line diameters
- Increased flow fuel injectors
 - Higher fuel pressures?
Conductivity Concerns

- alcohol is electrically conductive
- gasoline is “dielectric”
- fuel pump design is considered
- fuel sender design is considered
Alcohol % Identification

- Flex-Fuel vehicle need to verify %
 - designed to operate 0%-85%

- two main methods of verifying %
 - Flex-Fuel sensors
 - inference strategy
Flex-Fuel Sensors

- first method of learning alcohol %
- mounted in the fuel line
- can measure fuel conductivity, fuel temperature, dielectric constant
- direct input to the PCM
- sends signal continuously
Flex-Fuel Sensors

- normally use power, ground, and signal output circuits
- typically output a square wave signal in hertz (cycles per second)
- PCM uses tables stored in memory to adjust fuel control and ignition timing
- phased out by fuel inference type strategies
Flex-Fuel Sensor

- 0% ethanol=51 hz
- 25% ethanol=67 hz
- 50% ethanol=89 hz
- 85% ethanol=115 hz
- Shorted sensor=170 hz
FF Sensor Pros/Cons

- **Pros**
 - proven technology
 - read continuously
 - fuel system faults do not affect

- **Cons**
 - water read as alcohol
 - extra cost
 - extra parts to fail
Inference Strategy

- currently preferred method for alcohol %
- use oxygen sensor information to “infer” the alcohol concentration of the fuel
- Ford= “deductive refueling logic”
 GM= “Virtual Flex-Fuel Sensor”
- learns only after KAM reset or fuel level change
- FLI increase by at least 10% or KAM reset
PCM Inference Mode

- disables canister purge/normal fuel adaptive learning
- meters fuel based upon previous %
- monitors ECT, MAF, BOO, Gear, HEGOs
- alters injector on-time to obtain 0% fuel error
PCM Inference Mode

- delays locking in value
 - fuel in tank has reached engine
- locks in FF% once HEGOs switch normally
- canister purge/normal fuel adaptive learning are reinitialized after inference
- typically complete within 7 miles
Inference Strategy Pros/Cons

- **Pros**
 - uses existing components
 - less cost
 - less parts to fail

- **Cons**
 - infers alcohol % only after refuel
 - fuel system faults can alter inferred value
 - calibration revisions to fine tune strategy
Flex-Fuel Specific Faults

- PCM sees higher than correct alcohol %
 - PCM commands higher injector on-time
 - A/F ratio richer than optimal
 - HEGOs read a rich mixture
 - PCM will decrease injector on-time
 - fuel trims will show -% (rich condition)
 - may set rich codes (P0172/P0175)
Flex-Fuel Specific Faults

- PCM sees lower than correct alcohol %
 - PCM commands lower injector on-time
 - A/F ratio leaner than optimal
 - HEGOs read a lean mixture
 - PCM will increase injector on-time
 - fuel trims will show +% (lean condition)
 - may set lean codes (P0171/P0174)
Flex-Fuel Fault Diagnosis

- problem could be Flex-Fuel related
 - check FF PID first
 - compare PID reading to fuel sample
 - clear KAM and relearn alcohol %
 - substitute/change to known value fuel
- problem could be unrelated
 - fuel pressure
 - vacuum leaks
 - MAF voltage
Alcohol in Non-Flex Fuel Vehicles
E85 Fuel

- Designed for Flex-Fuel vehicles
- Lower heat energy than gasoline
- Corrosive to certain materials
- Can void manufacturer warranties of non Flex-Fuel vehicles
Manufacturer Statements (General Motors)

- Only vehicles designated for use with E85 should use E85 blended fuel.
- Use of fuel containing greater than 10% ethanol in non-E85 designated vehicles can cause driveability issues, service engine soon indicators as well as increased fuel system corrosion.
- Repairs that result from the use of improper fuel, such as the use of gasoline containing more than 10% Ethanol in a non-FlexFuel certified vehicle, are not covered under the terms of the New Vehicle Warranty.
Straight E85 or ethanol is not smart

- **Fuel injected vehicles**
 - May run properly due to adaptive learning
 - Will set MIL and set lean codes
 - May lean out dangerously at WOT

- **Carbureted vehicles**
 - Will not run properly
 - Will be lean at all times
Blending Ethanol

- Blending ethanol can obtain ethanol benefits without undesirable effects.
- Vehicles built after 1990 were designed for E10.
- Ethanol can increase octane and lower emissions.
- Maximum ethanol % can be tested on various vehicle designs.
Blending for Fuel Injection

- Start with low ethanol % and increase until undesirable traits are present
- Check HEGOs at WOT
- Calculate % by volume
- Sample fuel at rail to verify %
Alcohol Conversions

- **Corrosion protection**
 - Teflon, polyethylene, stainless steel
- **Fuel system**
 - Sufficient fuel flow
 - Initial filter replacements
 - Enrichment method
- **Engine modifications**
 - Ignition timing, compression
- **Cold start enrichment**
Aftermarket Conversions

- Aftermarket alcohol conversion kits are widely available online
 - Reprograms (E85 Solutions)
 - Standalone CPUs (FLEXTEK)
- Conversions do not void warranty
 - Magnuson-Moss Act
- May require recertification to be resold
Blending for Carburetors

- Much less ethanol can be used in unmodified carbureted vehicle.
- Older vehicle designs not set up for alcohols.
- If ethanol use is desired for carbureted vehicle, rejetting should be performed.
Carburetor Conversions

- Larger power valve if available
- Increase accelerator pump flow
 - Drill orifice 10%-25%
 - Adjust arm travel or pump cams
- Use alcohol rated seals, gaskets, float
- Manual chokes are desired
Optimizing for Alcohol

- increased ignition timing
- higher compression ratio
- superchargers/turbochargers
- electric fuel pump
- tune, tune, tune